PRETRANSFUSION COMPATIBILITY TESTING
Shan Yuan, MD
(Last Updated 2/25/2011)

Objective
Prevent hemolytic transfusions resulting from the transfusion of
- ABO mismatched RBC
- RBC bearing antigens to which the recipient has been sensitized,
 and has formed a potentially clinically significant alloantibody

Overview
Two-armed process, testing of both the donor unit and the recipient to ensure compatibility:

Evaluation of the donor includes
- Testing of the donor unit for infectious diseases
- ABO/Rh typing and antibody screen.

Evaluation of the recipient includes
- ABO/ Rh typing
- Antibody screen. Perform antibody identification if antibody screen is positive to
determine the identity of the antibody, so units lacking the corresponding antigen(s)
are provided.

Crossmatch
- Tests the compatibility of the recipient’s serum with RBCs from potential donor unit
- The crossmatch serves to:
 o Reconfirm ABO compatibility
- Reconfirm compatibility when antigen negative units are selected for patients with alloantibodies
- Detect the presence of antibodies to low-frequency antigens which might not be detected by the antibody screen

Recipient Specimen Requirements

- Labeling: Specimen must be labeled at the time of collection with:
 - Two unique patient identifiers
 - Must have means of positive identification of patient at time of collection: e.g. wristband
 - Phlebotomist identifier
 - Date

- Useful clinical information
 - Transfusion history, pregnancy history: helpful in assessing the risk of pre-existing alloantibodies, risks for delayed hemolytic transfusion
 - Sex, age, clinical diagnosis, ordering MD
 - Likely urgency of transfusion

- Check-type Policy
 - To ensure that ABO incompatible units are not issued, in non-emergent situations, release of RBC products requires the blood type to be established on two separate occasions. This can be accomplished by:
 - Establish consistency between the historical blood type and the current blood type
 - If no previous blood type on record, need another separately drawn specimen to confirm ABO blood type (this is referred to as the Check-Type sample at UCLA)

- Age of Specimen
 - Specimen must be \(\leq 3 \) days old, if patient has been transfused or pregnant in the past 3 months.
 - This is so that recently formed alloantibodies in a potentially sensitized patient can be detected prior to transfusion.
 - For inpatients, it’s simpler to require that all patient’s specimens to be \(\leq 3 \) days old
 - For outpatients, if patient has not been transfused or pregnant in the past 3 months, specimens \(\leq 30 \) days old can be used

- Storage of Specimen
 - Required by AABB to retain specimen (refrigerated) for 1 week post transfusion.
 - This allows additional work to be done on the specimen if needed
 - Serves as the “pretransfusion sample” in transfusion reaction work-ups.
Segments associated with the unit are also retained for 7 days post transfusion per AABB requirement.

Recipient/Patient Testing

ABO and Rh Typing
- ABO front and back types, must resolve discrepancy if present.
 - Front (cell) type: Recipient RBC+ reagent anti-A, and anti-B
 - Reverse/Back (plasma) type: Recipient plasma/serum + reagent A1 and B RBC’s
- Rh typing: If D negative, weak D testing (to detect weakly expressed D antigen that might be missed by routine D typing) NOT required on recipient. (*There is no harm in giving a weak D positive patient D negative units*)
- Check records to see prior typing exists. If not, need a “Check Type” specimen.

Antibody Screen/Identification
- Goal: To screen for and identify unexpected, clinically significant RBC antibody
- Antibody screen
 - Test patient plasma/serum against 2 or 3 group O screening cells with various significant RBC antigens represented on at least one cell (e. Rh, Kell, Duffy, Kidd, S/s Blood Group antigens)
- Perform antibody identification (ABID) if screen is positive. ABID panel usually consists of 10-12 reagent cells to allow determination of antibody specificity
- Check records for previously identified antibodies:
 - Previously identified antibodies should be honored and appropriate units lacking the specific antigen(s) should be selected. Even if current sample fails to demonstrate the antibodies.
- Methods:
 - Test may be done in an “enhancement” medium that enhances the antibody-antigen interactions, as compared to in normal saline:
 - LISS (Low ionic strength saline): decrease zeta potentials
 - PEG (polyethylene glycol): displaces H2O molecules
 - Read test (look for agglutination or hemolysis) at different phases:
 - IS phase (immediate spin):
 - Two drops serum + two drops of 2-5% RBC solution mixed together in tube, immediately centrifuge for 15-30 sec and examine
 - Detects room temperature-reactive antibodies, which are predominantly IgM (often clinically insignificant antibodies).
 - This phase is not performed by many labs.
 - After Incubation at 37C
 - Incubate for a specified time. Incubation time is shorter when enhancement (LISS, PEG) solution used. Examine for agglutination and hemolysis as above.
 - Some IgG antibodies start to show reactivity at this phase
 - Anti-Human Globulin Phase (AHG)
After AHG (Coomb’s reagent) is added and incubation, spin and read.
- Designed to further enhance IgG reactivity

Donor /Unit Testing

ABO and Rh Typing
- ABO forward and reverse typing as above.
- Rh Type
 - Donor RBC plus anti-D reagent, look for agglutination
 - All Rh(D) negative units must be checked for weak D antigens to avoid sensitization of a Rh(D) negative recipient

RBC Alloantibody Screen/Antibody Identification
- Test donor serum against screening reagent cells as above for patient testing
- If positive: Can only use RBC units.
 - Plasma may be discarded or sent for fractionation of other plasma derived products, e.g. albumin.
 - Platelets: Discarded. Platelet products contain significant amounts of plasma.
 - Donor not eligible to donate platelets or plasma in the future

Additional Testing on the Unit Performed at the Transfusing Facility
- Repeat ABO (front and back) type
- Repeat Rh type, check Rh negative unit for weak D

Crossmatch (XM)
- Purpose: Assures the compatibility of the recipient’s serum with RBCs from potential donor units
- If antibody screen on the recipient is positive: MUST perform XM at antiglobulin phase, i.e. A “full crossmatch”.
- If antibody screen is negative: AHG phase CM not required, but MUST confirm ABO compatibility by performing XM in one of the two following ways:
 - Immediate spin crossmatch
 - Done at room temp, spin immediately after mixing donor RBC and recipient serum/plasma
 - Essentially only detects ABO incompatibility
 - Occasionally may get interference from other room temp reactive IgM antibodies (e.g. Anti-Lewis, M), which are not clinically significant
 - Electronic crossmatch
 - Must use an electronic blood bank information system that can verify ABO and Rh compatibility
 - Only checks for ABO compatibility
 - Requirements of the system used for electronic XM:
• FDA-approved
• Validated on-site to show only ABO compatible units will be selected
• Logic alerts user when there are ABO discrepancies between donor and recipient, or between donor ABO/Rh type on file and based on confirmation tests
• Method to verify accuracy of data entry
• ABO type on patient done twice: this could be twice on the current specimen, or on two different specimens, or once on a current specimen and there is ABO group info on record