DELAYED TRANSFUSION REACTIONS
Shan Yuan, MD
Last Updated May 23rd, 2011

I. Delayed Hemolytic Transfusion Reaction (DHTR)
 A. Incidence: 1:5,000 to 1:11,000
 B. Etiology/Pathophysiology
 o Primary Alloimmunization
 ♦ Antibody production begins 7 – 10 days to weeks or months after antigen exposure
 ♦ May decrease survival of transfused foreign cells in circulation – monitor by decrease in Hgb
 ♦ Usually not clinically significant; manifests as positive DAT and antibody detectable in patient’s serum and eluate
 o Anamnestic Response
 ♦ Occurs in previously immunized patient, secondary response to RBC Ag
 ♦ Primary response undetectable
 ♦ Rapid rise in IgG antibody titer in 3 – 7 days following exposure to the offending antigen
 ♦ Hemolysis generally extravascular, occasionally intravascular (particularly DHTRs due to Kidd antibodies)
 C. Signs/Symptoms
 o Usually very mild, unremarkable except falling hgb, hct without other explanation
 o But may see fever, mild jaundice, decreased haptoglobin, occasional hemoglobinuria, acute renal failure in severe (rare) cases
 o Often no symptoms
 ♦ If asymptomatic and without lab findings (including Hgb changes) other than newly positive antibody screen, may be called “delayed serologic reaction (DSTR)”
 D. Action/Evaluation
 o Post-transfusion DAT should positive. Negative only if all antigen positive cells have been cleared.
 o Perform an eluate to determine antibody specificity; correlate with serum antibody screen/identification
 o Consider phenotyping transfused units to gauge the amount of transfused RBCs that are antigen positive
 o Communicate with clinicians: monitor hgb/hct level, assess if there are other reasons for the Hgb level to drop, follow serial hemolysis labs

II. Transfusion-Associated Graft versus Host Disease (TA-GVHD)
 A. Mechanism: Transfused T lymphocytes see host tissues as foreign, proliferate and attack the immunocompromised host, who is unable to “inactivate” the transfused lymphocytes
 B. Clinical presentation:
o Fever, skin rash, GI involvement, liver damage.

- Hallmark of TA-GVHD: Bone marrow aplasia -> pancytopenia, death. This is not seen in GVHD associated with bone marrow transplant, as the bone marrow is not recognized as "self" and escapes the attack.

C. Treatment: No effective treatment if bone marrow aplasia develops (except bone marrow transplant?), near 100% fatality.

D. Prevention: Irradiation of lymphocyte-containing blood products given to at risk patients, including RBCs, platelets, and granulocytes.
 - Dose: 25Gy midplane, 15Gy minimum any point
 - Irradiation causes DNA damage of the donor lymphocytes, rendering them incapable of proliferating and attacking the host.
 - Irradiated RBC will expire in 28 days due to increased K+ leakage following irradiation. No effect on platelet and granulocyte products’ shelf life.

E. At risk patients
 - Congenital cellular immunodeficiencies (Classic example: DiGeorge’s)
 - Hodgkin’s disease
 - Intrauterine transfusion
 - Premature neonates (birth wt <1200g per AABB)
 - Stem cell transplant recipients/candidates (hence most patient with hematologic malignancy)
 - Recipients of blood components donated by relatives
 - Recipient donor pairs from genetically homogenous populations (e.g. all cellular products in Japan are irradiated)
 - Recipients of HLA matched cellular products
 - Debatable whether at risk due to lack of case reported, however TA-GVHD is often a missed diagnosis:
 - Solid organ transplant recipients
 - Recipients of “high-dose” chemotherapy or irradiation

III. Post-Transfusion Purpura
A. Incidence: Rare.
B. Etiology/Pathophysiology
 - Formation anti-\(\text{PL}^A1 \) (HPA-1A) is classic and most commonly involved
 - Almost everyone is \(\text{PL}^A1 \) positive, so \(\text{PL}^A1 \) negative patients are easily exposed to this platelet antigen through pregnancy or transfusion
 - Transfusion after antibody is formed leads to devastating destruction of platelets (both transfused \(\text{PL}^A1 \) positive, and autologous \(\text{PL}^A1 \) negative platelets). Possibly due to:
 - Absorption of the \(\text{PL}^A1 \) (HPA-1A) onto the recipients own platelets
 - Adherence of immune complexes to antigen negative platelets
 - Possibly due to production cross-reactive autoantibodies early in the immune response
 - Multiparous females especially at risk, associated with DRw52 HLA
Triggering transfusion does not have to be platelets – the small amount of platelets in RBC units can be sufficient to trigger the reaction. PTP cases have been reported to occur even after plasma transfusion.

C. Signs/Symptoms
- Marked thrombocytopenia in about one-three weeks (mean= 9 days) following transfusion (may be below 10,000/μL), can be accompanied by bleeding
- Thrombocytopenia may persist for several weeks. Self limited
- Mortality ~10-15%

D. Therapy/Evaluation
- IVIG successfully reverses the process (replacing therapeutic plasma exchange as the treatment of choice)
- Steroids, splenectomy may also help
- Plasmapheresis for refractory patients
- Platelets should not be transfused, antigen negative platelets will be destroyed quickly just like patient’s own platelets
- Blood bank work-up involves testing for platelet specific antibodies and determination of implicating antibody
- Prevention:
 - Avoid platelet transfusion. Transfusion of antigen-negative platelets considered only in dire scenarios (e.g. intracranial bleeding).
 - RBCs should be washed to remove residual platelet membraned fragments
 - Some recommend limiting transfusion of plasma to avoid adsorption of the PL^A1 (HPA-1A) onto the patient’s own platelets

IV. Iron Overload
- Each unit of RBCs contains 200 mg iron
- Risk Lifetime load of approximately 150 units in a 70 kg person
- Becomes a concern in chronically transfusion-dependent individuals
- Deposition causes liver, pancreas, gonad and cardiac dysfunction
- Treatment and prevention:
 - Deferoxamine (Desferol), Exjade. Oral agents have improved compliance and efficacy
 - Exchange transfusion rather than simple transfusion